
软仪表指令使用说明

PH 测量 (PH)

本指令主要用于测量水溶液中 H⁺含量。

EN 为使能控制位;

E 与前端传感器相连的 AI 通道的电压值,单位为毫伏:

T 当前的温度值(通过 AI 通道采集),单位为摄氏度; Ecal 校准溶液前端传感器采集的电压值,可以通过 与之相连的对应的 AI 通道读出,单位为毫伏;

Tcal 校准时的温度,单位为摄氏度;

CPHcal 校准溶液对应的 H 浓度值;

MODE 模式选择

0: 计算 PH 值

1: 标定第一种定标溶液

2: 标定第二种定标溶液

3: 标定完成

4:恢复出厂参数

5 : 用户手动输入参数 K0,E0,T0 (其中 K0 为计算 PH 值时用到的斜率,从 CPHcal 接口获得; E0 为计算 PH 时的标定电压,从 Ecal 接口获得; T0 为计算 PH 时的标定温度,从 Tcal 接口获得,这些值是计算 PH 值所必须用到的参数)

Index 为测量通道选择

PH 为当前溶液对应的 PH 值

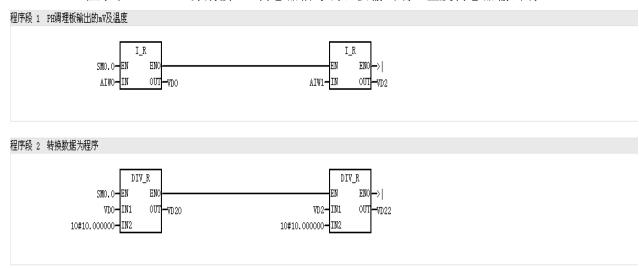
KO 为计算 PH 时的斜率

E0 为计算 PH 时的标定电压

T0 为计算 PH 时的标定温度

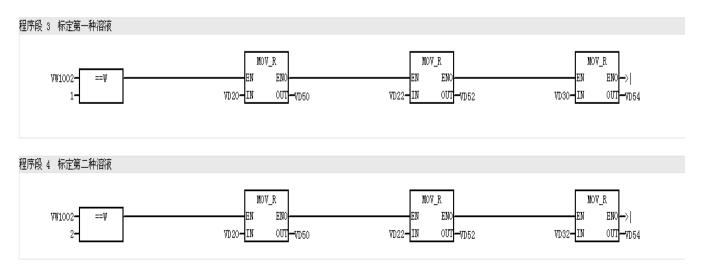
ENO 输出状态指示,1 为正常工作状态,0 为非工作状态

	操作数有效范围和长度	数据类型
EN	I,Q,V,L,M,S,SM,T,C,XI,XQ,能量流	BOOL
Е	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
Т	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
Ecal	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
Tcal	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
CPHcal	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
MODE	IW,QW,VW,LW,MW,SW,SMW,XIW,XQW,AIW,AQW,PAIW,PAQW,常数	WORD
Index	IW,QW,VW,LW,MW,SW,SMW,XIW,XQW,AIW,AQW,PAIW,PAQW,常数	WORD


PH	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
K0	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
E0	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
Т0	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
ENO	Q,V,L,M,S,SM,XQ,能量流	BOOL

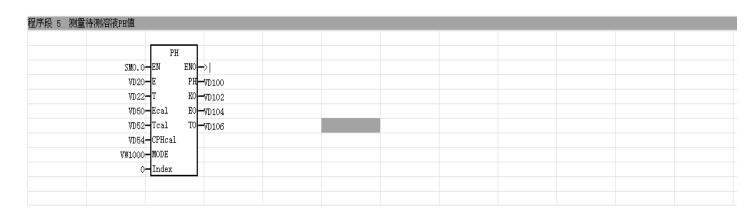
理解 PH 测量指令:

本指令的作用是测量水溶液 PH值,使用时应先在两种已知 PH值的定标溶液中对 PH电极进行定标(两点定标法),通过模式切换,获得电极在 PH值为 PH1的溶液中传感器的输出信号 E1,溶液温度 T1,以及在 PH值为 PH2的溶液中传感器的输出信号 E2,溶液温度 T2,而后将电极放入待测溶液中,模块根据采集的传感器在当前溶液中输出的信号 E以及温度传感器采集的溶液温度 T,从而计算出当前溶液的 PH值。

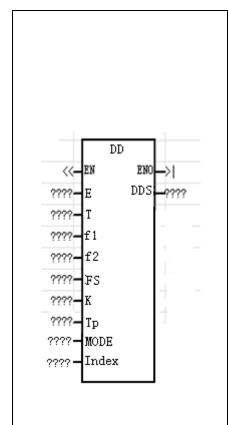

示例程序:

程序中 AIO, AII 分别接 PH 传感器信号调理板输出端,温度传感器输出端。

程序段 1: 将采集的信号转换为浮点数据;


程序段 2: 将信号码值转换为真实值;

程序段 3: 将 PH 电极放入第一种 PH 值的定标溶液中,给 MODE 赋值为 1,将传感器在第一种定标溶液中的信号存储在 VD50,温度存储在 VD52,定标


溶液 PH 存储在 VD54 中;

程序段 4: 将 PH 电极放入第二种 PH 值的定标溶液中,给 MODE 赋值为 2,将传感器在第二种定标溶液中的信号存储在 VD50,温度存储在 VD52,定标溶液 PH 存储在 VD54 中;

程序段 5: 将传感器放入待测溶液中,给 MODEW 赋值为 3,利用标定溶液的值计算斜率,在给 MODE 赋值 W 为 0,PH 功能块将根据当前传感器输出的信号 VD20,及温度 VD22,及在定标溶液中获取的数值计算出当前溶液的 PH 值。

电导率测量(DD)

EN: 使能标志位,为1时启动功能块运行

E: 测量时的电压

T: 测量时的温度

f1: 第一设定频率

f2: 第二设定频率

FS: 滤波选择

0. 不滤波 1. 滤波

K: 电极常数,根据被测溶液不同而不同

Tp: 温补系数, 手动输入温补系数

一般溶液: 0.02

酸类溶液: 0.016

盐类溶液: 0.024

碱类溶液: 0.019

其他:此时未加温补

MODE:测量,校准模式

0. 测量模式

1. 校准 100 Ω

2. 校准 1K

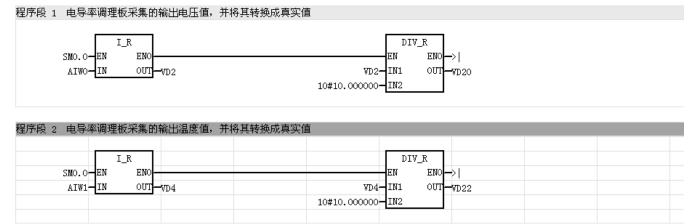
3. 校准 10K

4. 校准 100K

5. 校准电阻完成

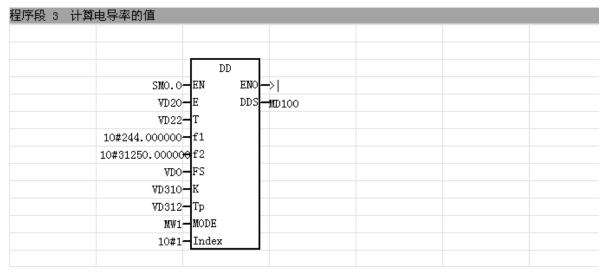
Index 测量路数选择

ENO: 能量流输出

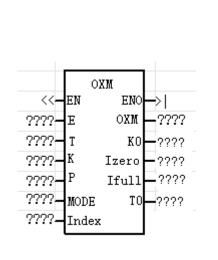

DDS: 计算溶液的电导率

	BOOL
D,XAQD,常数	REAL
D,XAQD,常数	REAL
XIW, XQW, PAIW, PAQW,	WORD
	BOOL
D,XAQD,常数	REAL
D,XAQD,常数	REAL
(QW,PAIW,PAQW,AIW,AQ	WORD
D,XAQD,常数	REAL
D,XAQD,常数	REAL
D,XAQD,常数	REAL
	BOOL
	DD,XAQD, 常数 XIW, XQW, PAIW, PAQW, DD,XAQD, 常数 DD,XAQD, 常数 XQW,PAIW,PAQW,AIW,AQ DD,XAQD, 常数 DD,XAQD, 常数 DD,XAQD, 常数

本指令的作用是测量液体的电导率的值,首先在上电以后通过激励源间断地给出两个频率激励电导池,从电导池分压得到的两个电压量经过缓冲、整流、缓冲和滤波后输出给主控模块。通过所得到的参数计算电阻值,再对得到的电阻进行校准,最后利用校准完成后的电阻值、电极常数、温度以及温补系数等求得电导率的值。


示例程序:

模块与电导板连接,电导板 Q1 和 Q2 分别接模块 Q3 和 Q2, V0+和 V0-接 AI 口,例如 A0 和 B0, IN+和 IN-接一个 100K 电阻。程序中 AI0, AI1 分别接电导率传感器信号调理板输出端,温度传感器输出端。


程序段 1: 采集电压信号,并将其信号码值转换成真实值(IN2的数值视现场调理板的放大倍数而定);

程序段 2: 采集温度信号,并将其信号码值转换成真实值(IN2的数值视现场温度传感器的放大倍数而定);

程序段 3: 先后给 MODE 赋值为 1, 2, 3, 4 进行校准 $100\,\Omega$, 1K, 10K, 10K,

溶氧测量 (OXM)

对介质中的溶解氧含量进行测量,结果放入 OUT中。

- E 输入电压值(毫伏)
- T输入温度值
- K用户手动输入斜率(NA/mbar)
- P手动输入标准大气压
- MODE 为模式选择
- 0表示测量模式分压表示法
- 1氧浓度表示法单位 ppb
- 2表示标定零点
- 3表示标定满度
- 4. 标定完成设置
- 5 恢复出厂参数
- 6 用户手动输入模式(输入 K0,Izero, Ifull, 其中 K0 从 K接口获得,Izero 从 E接口得到,Ifull 从 T接口得到,这些值是计算 PH 值所必须用到的参数)

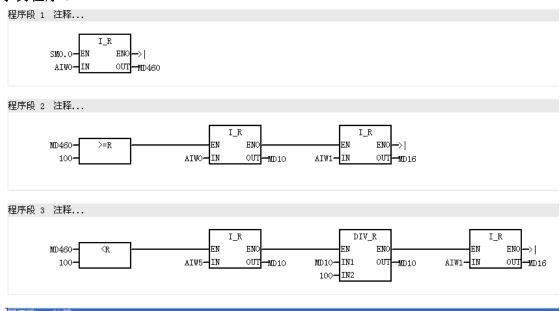
Index 测量路数选择

(每个模块最多支持两路测量)

OXM 输出的溶氧值

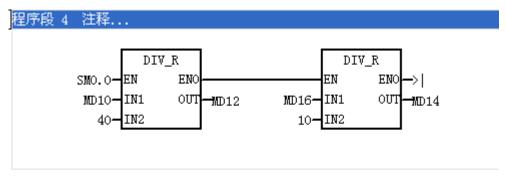
K0 计算溶氧的斜率

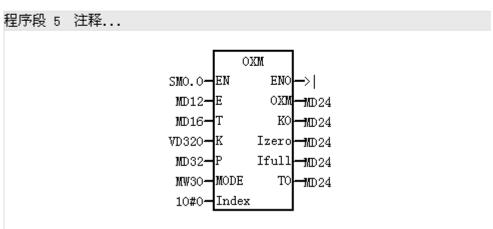
Izero 溶氧电流零点


Ifull 溶氧电流满度

T0 测量溶氧时的标定温度

操作数	操作数有效范围和长度	数据类型
EN	I,Q,V,L,M,S,SM,T,C,XI,XQ,能量流	BOOL
Е	VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD,*MD,*VD,常数	REAL
Т	VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD,*MD,*VD,常数	REAL
K	VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD,*MD,*VD,常数	REAL
P	VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD,*MD,*VD,常数	REAL
MODE	IW,QW,VW,LW,MW,SW,SMW,XIW,XQW,AIW,AQW,PAIW,PAQW,常数	WORD
Index	IW,QW,VW,LW,MW,SW,SMW,XIW,XQW,AIW,AQW,PAIW,PAQW,常数	WORD
OUT	VD,LD,MD,SD,SMD,XQD,PAQD, *MD,*VD,	REAL
K0	VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD,*MD,*VD,常数	REAL
Izero	VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD,*MD,*VD,常数	REAL
Ifull	VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD,*MD,*VD,常数	REAL
T0	VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD,*MD,*VD,常数	REAL
ENO	Q,V,L,M,S,SM,XQ,能量流	BOOL


本指令的作用是获得溶液中溶解氧的含量。使用前先进行参数的标定,需要标定的参数 有电流零点,电流满度,以及温度满度,并结合大气压值以及斜率值计算出溶液溶解氧的含量。


示例程序:

程序段 1: 将采集的 NTC 信号转换为浮点数据;

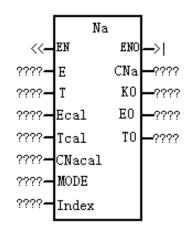
程序段 2: 当 NTC 的值大于 100 时,获取温度和电压值;程序段 3: 当 NTC 的值小于 100 时,获取温度和电压值;

程序段 4: 将获得的温度和电压转换成码值;

程序段 5: 计算溶液的溶氧值;

零点标定:

将 MODE 设置为 2, 即向 VW30 中写入 2, E 为零点电流码值。


满度标定:

将 MODE 设置为 3,即向 VW30 中写入 3,E 为满度电流码值,T 为满度温度码值,校准完成后,将 MODE 设置为 4,即向 VW20 写入 4,结束校准,此时校准数据将保存到 FLASH 中,数据掉电保存,下次上电后即不用进行校准,直接进行测量操作即可。

若用户校准过程出现误操作,想恢复出厂参数,将 MODE 设置为 5,即向 VW30 中写入 5,即可恢复出厂时的标定参数。

测量: 标定完成以后,向 VW30 中写入 0,进行溶解氧浓度的测量。

Na 离子测量(Na)

本指令主要用对含钠的水溶液中钠离子进 行测量;

EN 为使能控制位;

E 与前端传感器相连的 AI 通道的电压值, 单位为毫伏;

T 当前的温度值(通过 AI 通道采集),单位为 摄氏度;

Ecal 校准溶液前端传感器采集的电压值,可以通过与之相连的对应的 AI 通道读出,单位为毫伏;

CNacal 校准溶液对应的 Na⁺浓度值 (ppb); Tcal 校准时的温度,单位为摄氏度;

MODE 模式选择

0: 计算溶液 Na 离子浓度

1: 标定第一种定标溶液

2: 标定第二种定标溶液

3: 标定第三种定标溶液

4: 采用三点标定的方法计算标定

参数(采用三点标定时,计算取第一,第二和第三种定标溶液参数)

5: 标定完成

6:恢复出厂参数

7: 用户手动输入斜率 K0,E0,T0

(K0 从 CNacal 接口获得; E0 从 Ecal 接口获得; T0 从 Tcal 接口获得)

8:采用两点标定待测方法计算标 定参数(采用两点标定时,计算取第二和第三种 定标溶液参数)

Index 测量路数选择

CNa 为当前溶液对应的钠离子值

K0: 测量溶液斜率

E0: 测量溶液时的标定电压

T0:测量溶液时的标定温度

ENO 输出状态指示, 1 为正常工作状态, 0 为非工作状态

	操作数有效范围和长度	数据类型
EN	I,Q,V,L,M,S,SM,T,C,XI,XQ,能量流	BOOL
Е	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
Т	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
Tcal	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL

CNacal	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
TYPE	IW,QW,VW,LW,MW,SW,SMW,XIW,XQW,AIW,AQW,PAIW,PAQW,常数	WORD
Index	IW,QW,VW,LW,MW,SW,SMW,XIW,XQW,AIW,AQW, PAIW,PAQW, 常数	WORD
CNa	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
PNA	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
E0	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
K0	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
T0	ID,QD,VD,LD,MD,SD,SMD,XID,XQD,PAID,PAQD,XAID,XAQD 常数	REAL
ENO	Q,V,L,M,S,SM,XQ,能量流	BOOL

理解 Na 离子测量指令:

本指令用于对溶液中的 Na 离子浓度进行测量。初次使用本指令时应对钠电极电极进行标定

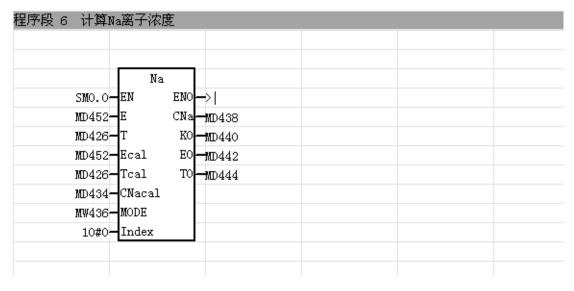
- (1) 将钠电极放入零钠水中,当电压稳定后,此时的电压值即为零钠时的钠电极输出电压。
- (2) 将钠电极放入第一种标定溶液中,当电压稳定后,此时的电压值即为第一种标定时的钠电极输出电压。
- (3)将钠电极放入第二种标定溶液中,当电压稳定后,此时的电压值即为第二种标定时的钠电极输出电压。

指令将根据三种标定溶液中的数值,计算出钠电极特性方程。

示例程序:

程序中 AI2, AI1 分别接 PH 传感器信号调理板输出端,温度传感器输出端。

程序段 1: 将采集的信号转换为浮点数据; 程序段 2: 将信号码值转换为真实值;



程序段 3: 给 MODE 赋值为 2,标定第一种溶液,溶液的 Na 离子浓度从 VD330 输入到 Cancal 引脚;

程序段 4: 给 MODE 赋值为 3,标定第一种溶液,溶液的 Na 离子浓度从 VD332 输入到 Cancal 引脚;

程序段 5: 从传感器获得的电压值为负值,通过此程序段将其转换成正值,以便计算;程序段 6: 计算 Na 离子浓度, MODE 操作顺序: 2,3,4,5,0。